Skip to main content

GUI of a chatbot using streamlit Library

GUI of an AI chatbot 


Creating a GUI for an AI chatbot using the streamlit library in Python is straightforward. Streamlit is a powerful tool that makes it easy to build web applications with minimal code. Below is a step-by-step guide to building a simple AI chatbot GUI using Streamlit.

Step 1: Install Required Libraries

First, you'll need to install streamlit and any AI model or library you want to use (e.g., OpenAI's GPT-3 or a simple rule-based chatbot). If you're using OpenAI's GPT-3, you'll also need the openai library.

pip install streamlit openai

Step 2: Set Up OpenAI API (Optional)

If you're using OpenAI's GPT-3 for your chatbot, make sure you have an API key and set it up as an environment variable:

export OPENAI_API_KEY='your-openai-api-key'

Step 3: Create the Streamlit Chatbot Application

Here's a basic example of a chatbot using OpenAI's GPT-3 and Streamlit:

import streamlit as st
import openai # Set the OpenAI API key (if you're using OpenAI's API) openai.api_key = st.secrets["openai_api_key"] # Initialize session state to keep track of the chat if "messages" not in st.session_state: st.session_state.messages = [] # Function to get a response from the chatbot (using OpenAI GPT-3) def get_response(user_input): response = openai.Completion.create( engine="text-davinci-003", prompt=user_input, max_tokens=150 ) return response.choices[0].text.strip() # Title of the app st.title("AI Chatbot") # Input from the user user_input = st.text_input("You:", "") # If user submits a message if user_input: # Store user input st.session_state.messages.append({"role": "user", "content": user_input}) # Get response from the chatbot response = get_response(user_input) # Store the chatbot response st.session_state.messages.append({"role": "bot", "content": response}) # Display the chat history if st.session_state.messages: for message in st.session_state.messages: if message["role"] == "user": st.text_area("You:", message["content"], height=100, max_chars=None, key=f"user_{len(st.session_state.messages)}") else: st.text_area("AI:", message["content"], height=100, max_chars=None, key=f"bot_{len(st.session_state.messages)}") # Keep the text input focused for the next user input st.text_input("You:", "", key="new_input", on_change=lambda: st.session_state.messages.append({"role": "user", "content": st.session_state.new_input}))

Step 4: Run the Streamlit Application

Save the above code into a Python file, e.g., chatbot.py, and run it using Streamlit:

streamlit run chatbot.py

Explanation:

  1. Streamlit Setup: The streamlit library (st) is used to create the GUI. The st.text_input is used to capture user input, and st.text_area displays the conversation history.

  2. Session State: st.session_state is used to store chat history, allowing the conversation to persist between user interactions.

  3. Chatbot Response: The get_response function sends the user's input to OpenAI's GPT-3 and retrieves a response. This can be modified to use other AI models or even a custom rule-based response generator.

  4. Continuous Interaction: The text input automatically focuses on new user input after each interaction, creating a smooth chat experience.

Step 5: Customize and Deploy

You can customize the chatbot by modifying the prompt, using a different AI model, or adding additional features like buttons or file uploads. Streamlit also makes it easy to deploy your app using platforms like Streamlit Sharing, Heroku, or any cloud service.

This basic example should get you started with building and deploying an AI chatbot using Streamlit! 

Comments

Popular posts from this blog

Data Filtration Using Pandas: A Comprehensive Guide

  Data Filtration Using Pandas: A Comprehensive Guide Data filtration is a critical step in the data preprocessing pipeline, allowing you to clean, manipulate, and analyze your dataset effectively. Pandas, a powerful data manipulation library in Python, provides robust tools for filtering data. This article will guide you through various techniques for filtering data using Pandas, helping you prepare your data for analysis and modeling. Introduction to Pandas Pandas is an open-source data analysis and manipulation tool built on top of the Python programming language. It offers data structures and functions needed to work seamlessly with structured data, such as tables or time series. The primary data structures in Pandas are: Series : A one-dimensional labeled array capable of holding any data type. DataFrame : A two-dimensional labeled data structure with columns of potentially different types. Why Data Filtration is Important Data filtration helps in: Removing Irrelevant Data : F...

Website hosting on EC2 instances AWS Terminal

Website hosting on EC2 instances  In the world of web development and server management, Apache HTTP Server, commonly known as Apache, stands as one of the most popular and powerful web servers. Often, developers and administrators require custom images with Apache server configurations for various purposes, such as deploying standardized environments or distributing applications. In this guide, we'll walk through the process of creating a custom image with Apache server (httpd) installed on an AWS terminal.   Setting Up AWS Environment: Firstly, ensure you have an AWS account and access to the AWS Management Console. Once logged in: 1. Launch an EC2 Instance: Navigate to EC2 service and launch a new instance. Choose an appropriate Amazon Machine Image (AMI) based on your requirements. It's recommended to select a base Linux distribution such as Amazon Linux. 2. Connect to the Instance: After launching the instance, connect to it using SSH or AWS Systems Manager Session Manage...

Introduction to Kubernetes: Orchestrating the Future of Containerized Applications

  Introduction to Kubernetes: Orchestrating the Future of Containerized Applications In the world of modern software development, efficiency, scalability, and reliability are paramount. Kubernetes, an open-source container orchestration platform, has emerged as a key player in achieving these goals. Originally developed by Google and now maintained by the Cloud Native Computing Foundation (CNCF), Kubernetes automates the deployment, scaling, and management of containerized applications. Let's explore what Kubernetes is, why it's important, and how it works. What is Kubernetes? Kubernetes, often abbreviated as K8s, is a platform designed to manage containerized applications across multiple hosts. It provides a framework to run distributed systems resiliently, handling the work of scaling and failover for applications, and providing deployment patterns and more. Key Features of Kubernetes Automated Scheduling : Kubernetes automatically schedules containers based on their resource...