Skip to main content

GUI of a chatbot using streamlit Library

GUI of an AI chatbot 


Creating a GUI for an AI chatbot using the streamlit library in Python is straightforward. Streamlit is a powerful tool that makes it easy to build web applications with minimal code. Below is a step-by-step guide to building a simple AI chatbot GUI using Streamlit.

Step 1: Install Required Libraries

First, you'll need to install streamlit and any AI model or library you want to use (e.g., OpenAI's GPT-3 or a simple rule-based chatbot). If you're using OpenAI's GPT-3, you'll also need the openai library.

pip install streamlit openai

Step 2: Set Up OpenAI API (Optional)

If you're using OpenAI's GPT-3 for your chatbot, make sure you have an API key and set it up as an environment variable:

export OPENAI_API_KEY='your-openai-api-key'

Step 3: Create the Streamlit Chatbot Application

Here's a basic example of a chatbot using OpenAI's GPT-3 and Streamlit:

import streamlit as st
import openai # Set the OpenAI API key (if you're using OpenAI's API) openai.api_key = st.secrets["openai_api_key"] # Initialize session state to keep track of the chat if "messages" not in st.session_state: st.session_state.messages = [] # Function to get a response from the chatbot (using OpenAI GPT-3) def get_response(user_input): response = openai.Completion.create( engine="text-davinci-003", prompt=user_input, max_tokens=150 ) return response.choices[0].text.strip() # Title of the app st.title("AI Chatbot") # Input from the user user_input = st.text_input("You:", "") # If user submits a message if user_input: # Store user input st.session_state.messages.append({"role": "user", "content": user_input}) # Get response from the chatbot response = get_response(user_input) # Store the chatbot response st.session_state.messages.append({"role": "bot", "content": response}) # Display the chat history if st.session_state.messages: for message in st.session_state.messages: if message["role"] == "user": st.text_area("You:", message["content"], height=100, max_chars=None, key=f"user_{len(st.session_state.messages)}") else: st.text_area("AI:", message["content"], height=100, max_chars=None, key=f"bot_{len(st.session_state.messages)}") # Keep the text input focused for the next user input st.text_input("You:", "", key="new_input", on_change=lambda: st.session_state.messages.append({"role": "user", "content": st.session_state.new_input}))

Step 4: Run the Streamlit Application

Save the above code into a Python file, e.g., chatbot.py, and run it using Streamlit:

streamlit run chatbot.py

Explanation:

  1. Streamlit Setup: The streamlit library (st) is used to create the GUI. The st.text_input is used to capture user input, and st.text_area displays the conversation history.

  2. Session State: st.session_state is used to store chat history, allowing the conversation to persist between user interactions.

  3. Chatbot Response: The get_response function sends the user's input to OpenAI's GPT-3 and retrieves a response. This can be modified to use other AI models or even a custom rule-based response generator.

  4. Continuous Interaction: The text input automatically focuses on new user input after each interaction, creating a smooth chat experience.

Step 5: Customize and Deploy

You can customize the chatbot by modifying the prompt, using a different AI model, or adding additional features like buttons or file uploads. Streamlit also makes it easy to deploy your app using platforms like Streamlit Sharing, Heroku, or any cloud service.

This basic example should get you started with building and deploying an AI chatbot using Streamlit! 

Comments

Popular posts from this blog

Website hosting on EC2 instances AWS Terminal

Website hosting on EC2 instances  In the world of web development and server management, Apache HTTP Server, commonly known as Apache, stands as one of the most popular and powerful web servers. Often, developers and administrators require custom images with Apache server configurations for various purposes, such as deploying standardized environments or distributing applications. In this guide, we'll walk through the process of creating a custom image with Apache server (httpd) installed on an AWS terminal.   Setting Up AWS Environment: Firstly, ensure you have an AWS account and access to the AWS Management Console. Once logged in: 1. Launch an EC2 Instance: Navigate to EC2 service and launch a new instance. Choose an appropriate Amazon Machine Image (AMI) based on your requirements. It's recommended to select a base Linux distribution such as Amazon Linux. 2. Connect to the Instance: After launching the instance, connect to it using SSH or AWS Systems Manager Session Manage...

An Introduction to LangChain: Simplifying Language Model Applications

  An Introduction to LangChain: Simplifying Language Model Applications LangChain is a powerful framework designed to streamline the development and deployment of applications that leverage language models. As the capabilities of language models continue to expand, LangChain offers a unified interface and a set of tools that make it easier for developers to build complex applications, manage workflows, and integrate with various data sources. Let's explore what LangChain is, its key features, and how it can be used to create sophisticated language model-driven applications. What is LangChain? LangChain is an open-source framework that abstracts the complexities of working with large language models (LLMs) and provides a consistent, modular approach to application development. It is particularly well-suited for tasks that involve natural language processing (NLP), such as chatbots, data analysis, content generation, and more. By providing a cohesive set of tools and components, Lang...

"Mastering Computer Vision: An In-Depth Exploration of OpenCV"

                                     OPEN CV  What is OPEN CV?   OpenCV  is a huge open-source library for computer vision, machine learning, and image processing. OpenCV supports a wide variety of programming languages like Python, C++, Java, etc. It can process images and videos to identify objects, faces, or even the handwriting of a human. When it is integrated with various libraries, such as  Numpy   which is a highly optimized library for numerical operations, then the number of weapons increases in your Arsenal i.e. whatever operations one can do in Numpy can be combined with OpenCV. With its easy-to-use interface and robust features, OpenCV has become the favorite of data scientists and computer vision engineers. Whether you’re looking to track objects in a video stream, build a face recognition system, or edit images creatively, OpenCV Python implementation is...