Skip to main content

GUI of a chatbot using streamlit Library

GUI of an AI chatbot 


Creating a GUI for an AI chatbot using the streamlit library in Python is straightforward. Streamlit is a powerful tool that makes it easy to build web applications with minimal code. Below is a step-by-step guide to building a simple AI chatbot GUI using Streamlit.

Step 1: Install Required Libraries

First, you'll need to install streamlit and any AI model or library you want to use (e.g., OpenAI's GPT-3 or a simple rule-based chatbot). If you're using OpenAI's GPT-3, you'll also need the openai library.

pip install streamlit openai

Step 2: Set Up OpenAI API (Optional)

If you're using OpenAI's GPT-3 for your chatbot, make sure you have an API key and set it up as an environment variable:

export OPENAI_API_KEY='your-openai-api-key'

Step 3: Create the Streamlit Chatbot Application

Here's a basic example of a chatbot using OpenAI's GPT-3 and Streamlit:

import streamlit as st
import openai # Set the OpenAI API key (if you're using OpenAI's API) openai.api_key = st.secrets["openai_api_key"] # Initialize session state to keep track of the chat if "messages" not in st.session_state: st.session_state.messages = [] # Function to get a response from the chatbot (using OpenAI GPT-3) def get_response(user_input): response = openai.Completion.create( engine="text-davinci-003", prompt=user_input, max_tokens=150 ) return response.choices[0].text.strip() # Title of the app st.title("AI Chatbot") # Input from the user user_input = st.text_input("You:", "") # If user submits a message if user_input: # Store user input st.session_state.messages.append({"role": "user", "content": user_input}) # Get response from the chatbot response = get_response(user_input) # Store the chatbot response st.session_state.messages.append({"role": "bot", "content": response}) # Display the chat history if st.session_state.messages: for message in st.session_state.messages: if message["role"] == "user": st.text_area("You:", message["content"], height=100, max_chars=None, key=f"user_{len(st.session_state.messages)}") else: st.text_area("AI:", message["content"], height=100, max_chars=None, key=f"bot_{len(st.session_state.messages)}") # Keep the text input focused for the next user input st.text_input("You:", "", key="new_input", on_change=lambda: st.session_state.messages.append({"role": "user", "content": st.session_state.new_input}))

Step 4: Run the Streamlit Application

Save the above code into a Python file, e.g., chatbot.py, and run it using Streamlit:

streamlit run chatbot.py

Explanation:

  1. Streamlit Setup: The streamlit library (st) is used to create the GUI. The st.text_input is used to capture user input, and st.text_area displays the conversation history.

  2. Session State: st.session_state is used to store chat history, allowing the conversation to persist between user interactions.

  3. Chatbot Response: The get_response function sends the user's input to OpenAI's GPT-3 and retrieves a response. This can be modified to use other AI models or even a custom rule-based response generator.

  4. Continuous Interaction: The text input automatically focuses on new user input after each interaction, creating a smooth chat experience.

Step 5: Customize and Deploy

You can customize the chatbot by modifying the prompt, using a different AI model, or adding additional features like buttons or file uploads. Streamlit also makes it easy to deploy your app using platforms like Streamlit Sharing, Heroku, or any cloud service.

This basic example should get you started with building and deploying an AI chatbot using Streamlit! 

Comments

Popular posts from this blog

Unveiling the Dynamics of Power and Seduction: A Summary of "The Art of Seduction" and "48 Laws of Power

 Unveiling the Dynamics of Power and Seduction: A Summary of "The Art of Seduction" and "48 Laws of Power In the realm of human interaction, where power dynamics and seductive maneuvers play a significant role, two influential books have emerged as guides to navigating the complexities of social relationships. Robert Greene, a renowned author, has penned both "The Art of Seduction" and "48 Laws of Power," offering readers insights into the subtle arts of influence and allure. This article provides a comprehensive summary of these two captivating works, exploring the key principles and strategies that shape the dynamics of power and seduction. The Art of Seduction In "The Art of Seduction," Robert Greene explores the timeless artistry of captivating and influencing others. The book is a journey into the psychology of seduction, unveiling various archetypes of seducers and providing a roadmap for the seductive process. Here are key points fro...

Kubernetes deployment within an ec2 instance

Kubernetes within an EC2 instance, We have to follow these steps:- Set up the EC2 instance with Kubernetes. Create a Kubernetes Deployment YAML file. Apply the deployment using kubectl . Below is a guide and code to accomplish this. Step 1: Set Up EC2 Instance with Kubernetes Launch an EC2 Instance : Choose an Amazon Linux 2 AMI or Ubuntu AMI. Select an instance type (t2.micro is fine for small projects). Configure security groups to allow SSH, HTTP, HTTPS, and any required Kubernetes ports. Install Docker : SSH into your instance and install Docker. sudo yum update -y sudo amazon-linux-extras install docker -y sudo service docker start sudo usermod -aG docker ec2-user For Ubuntu: sudo apt-get update sudo apt-get install -y docker.io sudo systemctl start docker sudo usermod -aG docker ubuntu Install Kubernetes (kubectl, kubeadm, kubelet) :s sudo apt-get update && sudo apt-get install -y apt-transport-https curl curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | s...