Skip to main content

Deploying salary prediction ML model inside a Docker container hosted on an EC2 instance:


Deploying your salary prediction ML model inside a Docker container hosted on an EC2 instance


A step-by-step guide to deploying your salary prediction ML model inside a Docker container hosted on an EC2 instance:

Step 1: Prepare the ML Model

  1. Train your model: Make sure your salary prediction model is trained and saved as a serialized file (e.g., model.pkl).
  2. Create a Flask API: If you haven't already, create a Flask API to serve the model predictions.
    from flask import Flask, request, jsonify
    import pickle app = Flask(__name__) # Load the model model = pickle.load(open('model.pkl', 'rb')) @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() prediction = model.predict([data['features']]) return jsonify({'prediction': prediction.tolist()}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
  3. Test the API locally: Run the Flask application locally to ensure it works as expected.

Step 2: Create a Dockerfile

  1. Create a Dockerfile in the same directory as your Flask app. Here's an example:
    # Use an official Python runtime as a parent image
    FROM python:3.8-slim # Set the working directory in the container WORKDIR /app # Copy the current directory contents into the container at /app COPY . /app # Install any needed packages specified in requirements.txt RUN pip install --no-cache-dir -r requirements.txt # Make port 5000 available to the world outside this container EXPOSE 5000 # Run app.py when the container launches CMD ["python", "app.py"]
  2. Create a requirements.txt file to list the dependencies
  3. Flask
    scikit-learn

Step 3: Build and Test the Docker Image Locally

  1. Build the Docker image:
    docker build -t salary-prediction-app .
  2. Run the Docker container locally:
    docker run -p 5000:5000 salary-prediction-app
  3. Test the API: Use Postman or curl to test your API endpoint (http://localhost:5000/predict).

Step 4: Set Up an EC2 Instance

  1. Launch an EC2 instance: Go to the AWS Management Console, launch an EC2 instance, and choose an appropriate AMI (e.g., Amazon Linux 2).
  2. Connect to the EC2 instance:
    ssh -i /path/to/your-key.pem ec2-user@your-ec2-public-dns
  3. Install Docker on the EC2 instance:
    sudo yum update -y
    sudo amazon-linux-extras install docker sudo service docker start sudo usermod -a -G docker ec2-user

Step 5: Deploy the Docker Container on EC2

  1. Copy your Docker image to the EC2 instance:

    • You can use docker save and docker load commands to transfer the Docker image, or you can push the image to a Docker registry (e.g., Docker Hub) and pull it on the EC2 instance.
    docker save salary-prediction-app | gzip > salary-prediction-app.tar.gz
    scp -i /path/to/your-key.pem salary-prediction-app.tar.gz ec2-user@your-ec2-public-dns:/home/ec2-user/ ssh -i /path/to/your-key.pem ec2-user@your-ec2-public-dns gunzip -c salary-prediction-app.tar.gz | docker load
  2. Run the Docker container on EC2:

    docker run -d -p 80:5000 salary-prediction-app

Step 6: Access Your Application

  • Access your app: The app should now be running on your EC2 instance. You can access it using the public DNS of your EC2 instance:
    http://your-ec2-public-dns/

Step 7: Secure Your Application

  • Security groups: Make sure your EC2 instance security group allows inbound traffic on port 80 (HTTP).
  • Optional: Set up a domain name and SSL for better security and accessibility

Your Application

  • Security groups: Make sure your EC2 instance security group allows inbound traffic on port 80 (HTTP).
  • Optional: Set up a domain name and SSL for better security and accessibility

Comments

Popular posts from this blog

Website hosting on EC2 instances AWS Terminal

Website hosting on EC2 instances  In the world of web development and server management, Apache HTTP Server, commonly known as Apache, stands as one of the most popular and powerful web servers. Often, developers and administrators require custom images with Apache server configurations for various purposes, such as deploying standardized environments or distributing applications. In this guide, we'll walk through the process of creating a custom image with Apache server (httpd) installed on an AWS terminal.   Setting Up AWS Environment: Firstly, ensure you have an AWS account and access to the AWS Management Console. Once logged in: 1. Launch an EC2 Instance: Navigate to EC2 service and launch a new instance. Choose an appropriate Amazon Machine Image (AMI) based on your requirements. It's recommended to select a base Linux distribution such as Amazon Linux. 2. Connect to the Instance: After launching the instance, connect to it using SSH or AWS Systems Manager Session Manage...

An Introduction to LangChain: Simplifying Language Model Applications

  An Introduction to LangChain: Simplifying Language Model Applications LangChain is a powerful framework designed to streamline the development and deployment of applications that leverage language models. As the capabilities of language models continue to expand, LangChain offers a unified interface and a set of tools that make it easier for developers to build complex applications, manage workflows, and integrate with various data sources. Let's explore what LangChain is, its key features, and how it can be used to create sophisticated language model-driven applications. What is LangChain? LangChain is an open-source framework that abstracts the complexities of working with large language models (LLMs) and provides a consistent, modular approach to application development. It is particularly well-suited for tasks that involve natural language processing (NLP), such as chatbots, data analysis, content generation, and more. By providing a cohesive set of tools and components, Lang...

"Mastering Computer Vision: An In-Depth Exploration of OpenCV"

                                     OPEN CV  What is OPEN CV?   OpenCV  is a huge open-source library for computer vision, machine learning, and image processing. OpenCV supports a wide variety of programming languages like Python, C++, Java, etc. It can process images and videos to identify objects, faces, or even the handwriting of a human. When it is integrated with various libraries, such as  Numpy   which is a highly optimized library for numerical operations, then the number of weapons increases in your Arsenal i.e. whatever operations one can do in Numpy can be combined with OpenCV. With its easy-to-use interface and robust features, OpenCV has become the favorite of data scientists and computer vision engineers. Whether you’re looking to track objects in a video stream, build a face recognition system, or edit images creatively, OpenCV Python implementation is...